Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype.
نویسندگان
چکیده
Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson's disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson's disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development of midbrain DA neurons by expression analyses and loss-of-function knockout mouse studies, including Nurr1, Pitx3, Lmx1b, Engrailed-1, and Engrailed-2. However, none of these factors appear sufficient alone to induce the mature midbrain DA neuron phenotype in ES cell cultures in vitro, suggesting a more complex regulatory network. Here we show that Nurr1 and Pitx3 cooperatively promote terminal maturation to the midbrain DA neuron phenotype in murine and human ES cell cultures.
منابع مشابه
Signaling of Glial Cell LineYDerived Neurotrophic Factor and Its Receptor GFR>1 Induce Nurr1 and Pitx3 to Promote Survival of Grafted Midbrain-Derived Neural Stem Cells in a Rat Model of Parkinson Disease
Glial cell lineYderived neurotrophic factor (GDNF) and its receptor GFR>1 have been implicated in the survival of ventral midbrain dopaminergic (DA) neurons, but the molecular mechanisms by which GDNF generates DA neurons in grafted midbrain-derived neural stem cells (mNSCs) are not understood. Midbrain-derived neural stem cells isolated from rat embryonic mesencephalon (embryonic day 12) were ...
متن کاملDirect Regulation of Pitx3 Expression by Nurr1 in Culture and in Developing Mouse Midbrain
Due to their correlation with major human neurological diseases, dopaminergic neurons are some of the most studied neuronal subtypes. Mesencephalic dopaminergic (mDA) differentiation requires the activation of a cascade of transcription factors, among which play a crucial role the nuclear receptor Nurr1 and the paired-like homeodomain 3, Pitx3. During development the expression of Nurr1 precede...
متن کاملPitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression.
In recent years, the meso-diencephalic dopaminergic (mdDA) neurons have been extensively studied for their association with Parkinson's disease. Thus far, specification of the dopaminergic phenotype of mdDA neurons is largely attributed to the orphan nuclear receptor Nurr1. In this study, we provide evidence for extensive interplay between Nurr1 and the homeobox transcription factor Pitx3 in vi...
متن کاملTemporally induced Nurr1 can induce a non-neuronal dopaminergic cell type in embryonic stem cell differentiation.
The nuclear transcription factor Nurr1 is involved in the development and maintenance of the midbrain dopaminergic (DA) neuronal phenotype. We analysed the cellular and biological effects of Nurr1 during embryonic stem (ES) cell differentiation using the ROSA26-engineered Tet-inducible ES cell line J1-rtTA that does not express transgenes in mature neurons. Induction of Nurr1 at nestin-positive...
متن کاملThe homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons.
The A9 dopaminergic (DA) neuronal group projecting to the dorsal striatum is the most vulnerable in Parkinson's disease (PD). We genetically engineered mouse embryonic stem (ES) cells to express the transcription factors Nurr1 or Pitx3. After in vitro differentiation of Pitx3-expressing ES cells, the proportion of DA neurons expressing aldehyde dehydrogenase 2 (AHD2) increased, while the total ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 8 شماره
صفحات -
تاریخ انتشار 2006